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ABSTRACT 

Semi-autonomous behaviors, such as leader-following and “point-and-go” navigation, 
have the potential to significantly increase the value of squad-level UGVs by freeing operators to 
perform other tasks. A variety of technologies have been designed in recent years to enable such 
semi-autonomous behaviors on board mobile robots; however, most current solutions use custom 
payloads comprising sensors such as stereo cameras, LIDAR, GPS, or active transmitters. While 
effective, these approaches tend to be restricted to UGV platforms capable of supporting the 
payload’s space, weight, and power (SWaP), and may be cost-prohibitive to large-scale 
deployment. Charles River has developed a system that enables both leader-following and “point-
and-go” navigation behaviors using only a single monocular camera. The system allows a user to 
control a mobile robot by leading the way and issuing commands through arm/hand gestures, and 
is capable of following an operator both on foot and aboard a vehicle. The operator may equally 
direct the robot via a lightweight interface, by simply indicating an object of interest or 
destination in the robot’s camera view. 

 
INTRODUCTION 

Teleoperation remains the dominant form of control for 
UGVs, even for comparatively simple tasks such as 
travelling between locations. This need for continuous 
“heads-down” operation of a UGV places an undesirable 
burden, both physical and cognitive, on human operators of 
these systems – as a result, squad-level unmanned systems 
are currently used as on-demand tools that temporarily 
provide a new situation-specific capability (e.g., 
reconnaissance or explosive ordnance disposal (EOD)) at the 
cost of decreased mobility and local situational awareness. 
The development of semi-autonomous behaviors, such as 
leader-following and “point-and-go” navigation, represents 
an important step toward reducing the cognitive loads 
associated with operating a UGV, and freeing operators to 
perform other tasks. A variety of technologies have been 
designed in recent years to enable such semi-autonomous 
behaviors on board mobile robots; however, most current 
solutions use custom payloads comprising sensors such as 
stereo cameras, LIDAR, GPS, or active transmitters. 
Although effective, this approach limits the portability of 
such technology to UGV platforms capable of supporting the 

payload’s space, weight, and power (SWaP), and may be 
cost-prohibitive to large-scale deployment. We present a 
Monocular Unmanned Leader-Follower (MULE-F) system 
that enables both leader-following and “point-and-go” 
navigation behaviors using only a single monocular camera. 
The system allows a user to control a mobile robot by 
leading the way and issuing commands through arm/hand 
gestures, and differentiates between the leader and nearby 
pedestrians. The system is capable of following an operator 
both on foot and aboard a vehicle. The operator may equally 
direct the robot via a lightweight interface, by simply 
indicating an object of interest or destination in the robot’s 
camera view. We have evaluated the system’s capabilities on 
publicly available benchmark datasets, as well as in 
representative scenarios captured using small and medium-
sized unmanned ground vehicles. 

 
DESIGN 

 
The MULE-F system is a Robot Operating System (ROS) 

based software system that may be installed as a stand-alone 
capability as part of a lightweight appliqué, or on an existing 
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onboard computer. Figure 1 illustrates the system’s major 
components. The system enables a human operator to issue 
commands via hand and arm gestures, and may by equally 
controlled via a wireless operator control unit (OCU). The 
system requires only a single camera and small computer. 
Figure 2 illustrates a typical hardware configuration on 
board a small unmanned ground vehicle (SUGV). 

 

 
Figure 1: MULE-F Architecture 

 

 
Figure 2: Vision-based autonomy appliqué components, 
consisting of an Allied Vision Technology Mako camera 
and Dynamixel servo (left), and a compact, fanless 
IntensePC computer (center). System installed on a 
Dragon Runner SUGV (right). 
 
LEADER-FOLLOWING 

 
Charles River Analytics has developed a compact system 

to autonomously track and follow a designated dismounted 
operator [1,2]. The system enables a UGV to autonomously 
follow an operator on foot, using a lightweight video camera 
and requiring no modifications to the leader’s equipment (in 
particular, no special clothing, markers or transmitters are 
required). The system is designed to require only a single 
color camera, with the intent to maximize portability across 
existing UGVs. The core software capabilities are designed 
with an emphasis on reduced computational complexity to 
minimize the payload’s size, weight, power and cost 
(SWAP-C) impact. The system is comprised of three core 
modules: a pedestrian and vehicle detection module that 
determines the locations of all visible pedestrians and 
vehicles in the UGV camera’s field of view; an appearance-
learning and tracking module that maintains a lock on the 
leader and differentiates between the leader and nearby 

pedestrians and vehicles; and a gesture recognition module 
that enables natural control of the vehicle. The system 
integrates efficient object detection software with kinematic 
tracking and online appearance learning techniques to 
reliably track a leader in complex outdoor environments. 

Our approach to pedestrian and vehicle detection is based 
on a sliding-window approach, in which a previously trained 
classifier is evaluated at multiple locations and scales in an 
image. At each location in the search space, which typically 
comprises ~50,000-100,000 windows in a 640x480 image, a 
battery of heterogeneous features including edge, contrast, 
and intensity distributions are computed and processed by an 
efficient boosted cascade classifier. Resulting detections are 
collected and processed by a kinematics and appearance-
based tracking algorithm that performs data association and 
state estimation. The trackers were evaluated on publicly-
available benchmark datasets for pedestrian and vehicle 
detection, exceeding 90% detection accuracy at a 10-1 false 
positives per image (FPPI) on the INRIA pedestrian dataset 
[3] and TME Motorway tracking dataset [4]. Spurious false 
positives and missed detections are resolved through the 
tracking framework, which is based on a particle filter 
implementation [5]. Figure 3 illustrates typical outputs for 
the pedestrian and vehicle tracker on several datasets, 
including the Performance Evaluation of Tracking and 
Surveillance (PETS) 2009 dataset [6], ETH Pedestrians [7], 
and TME Motorway. 

 

 
Figure 3: Tracking outputs on benchmark datasets. 

Clockwise from the top-left: PETS 2009; ETH 
Pedestrians; TME Motorway.  

 
The end-to-end tracking system operates at 20Hz, enabled 

by efficient sharing and re-use of features across detection, 
tracking, and gesture recognition modules. The leader-
following system has been integrated and tested on multiple 
mobile robots, including Dragon Runner, TALON, and 
Segway RMP platforms. Figure 4 illustrates an outdoor test 



Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Enabling Semi-Autonomous Behaviors with a Single Camera, Monnier et al. 
 

Page 3 of 5 

in which MULE-F follows a human leader in a 1700m loop 
in a busy Boston public park. 

 
Figure 4: GPS track and camera views of a system test in 
a Boston public park. The environment contains a large 
variety of challenging terrain features including trees 
and hills, varying lighting, and passers-by. 

 
 

Gesture Recognition 
 
Non-verbal communication remains an important 

component of squad-level interaction, and provides a natural 
method of signaling intent without the use of specialized 
equipment. The MULE-F gesture-recognition module is 
designed to recognize hand and arm signals using only 
camera input, enabling a user to issue commands to the robot 
in a rapid and natural way. The system supports leader self-
designation, as well as a lexicon of five gestures enabling 
various degrees of direct motion control, including “start,” 
“stop,” “turn left/right,” and “move forward”. The core 
software consists of a multi-class classification framework in 
which N classifiers are trained, such that each classifier is 
tuned to distinguish between a specific gesture and all other 
gestures/non-gestures in the dataset. In order to recognize a 
new example, we find the maximum likelihood gesture 
model that corresponds to an image: argmax p(I|Ɵi), where 
Ɵi is the model for the ith gesture and I is the input image. 
Each gesture classifier consists of a support vector machine 
(SVM) trained on an extensive dataset of gestures performed 
by multiple individuals, as well as non-gestural data. For 
efficiency, the same image features computed for detection 
are re-used for gesture recognition. As with the pedestrian 
and vehicle tracking module, detected gestures are 
temporally filtered to eliminate false positives caused by 
noise. In our evaluations, the gesture recognition system 
recognized 98.7% of gestures in a dataset of over 1300 
annotated instances.  

At initialization, the gesture recognition module analyzes 
each tracked pedestrian for a “follow me” gesture, consisting 
of a raised arm. The first pedestrian to issue the command is 

selected as the leader, which may be manually confirmed via 
the OCU for added safety. Once the leader has been 
selected, the system processes gestures only for the track 
identified as the leader. Figure 5 illustrates the tracking and 
gesture recognition process, visualized via the developer 
interface. 

 

 
Figure 5: Visualization of the gesture recognition 
module, via the development and testing interface. The 
list of enabled gestures is displayed in the bottom-left 
corner, while a log of recently issued commands is shown 
in the bottom-right corner. The leader is highlighted in 
yellow. 

 
POINT-AND-GO NAVIGATION 

 
Robots are often used to investigate potentially dangerous 

situations; however, remote tele-operation can be 
cumbersome and fatiguing, and may distract an operator 
from important developments in his or her immediate 
surroundings. A technology such as point-and-go navigation, 
in which an operator may simply select an object of interest 
in the robot’s camera view as a navigation goal, would 
significantly reduce the need for heads-down operation 
during simple tasks such as travelling down a road. The 
MULE-F system enables an operator to specify an object of 
interest as a destination by simply selecting it on the screen 
of the OCU. Alternatively, as the system is ROS-based, a 
third-party interface may issue the same commands using a 
properly structured ROS message. Figure 6 illustrates usage 
of the point-and-go navigation component. 

 
Destination Tracking 
The point-and-go navigation software is based on an 

implementation of Median Flow, applied to a densely 
sampled grid of points within the user-selected region of 
interest. Points within the region are tracked from frame to 
frame of video using the Kanade-Lucas-Tomasi (KLT) 
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approach to optical flow [8]. Median Flow then estimates the 
quality of each point prediction and filters out the outliers. 
Point quality is based on normalized cross-correlation 
(NCC), a commonly used template matching technique,  and 
forward-backward (FB) error [9], which is the Euclidean 
distance between the initial point trajectory and its trajectory 
after performing tracking forward and backward in time. 
Because the filtered points are not independent, they can be 
treated as part of a larger unit. Calculating the median scale 
and position displacement over all filtered points then gives 
us a reliable estimate of the bounding box displacement. 

 

  
Figure 6: Point-and-go navigation. The operator may 
select a visible object and issue a “drive to” command 
(left) using pinch-to-zoom or a pointing device. The 
system will then drive autonomously and signal to the 
operator when the destination has been reached (right). 

 
To recover from tracker failures due to occlusions, which 

may be caused by moving people or vehicles in the scene, or 
by platform motion during obstacle avoidance, the system 
reacquires tracked objects using a trained appearance model. 
Figure 7 illustrates a scenario in which moving objects (a 
pedestrian and vehicle) temporarily occlude the UGV’s view 
of the selected destination. In order to maintain an 
appearance model robust to changes in viewpoint and 
background, we continuously update an online classifier. 
Classifier updates exploit a set of structural constraints 
generated by the Median Flow tracker: if the tracker exhibits 
high confidence, than we can be relatively certain that 
detector confidences near the track should be positive and 
those far away negative. These constraints allow us to guide 
the learning process by augmenting the training data with 
only the most difficult examples (i.e. bootstrapping), those 
that violate the structural constraints. To account for 
variation in lighting and exposure conditions, we apply NCC 
between the tracked patch and the initialized patch, to 
estimate tracker confidence. If confidence is low, we avoid 
updating the appearance model for that frame to prevent 
training on incorrectly labeled data. In either case, the 
detector processes each frame using a scanning window and 
outputs a maximum-confidence detection. If this detection 
confidence is greater than the tracker confidence, then the 
tracker is reinitialized with the new detection patch. 

We use a random fern-based classifier due to its 
computational efficiency and ease of iterative updates, in 
conjunction with the edge, color, and contrast features 
produced by the pedestrian and vehicle tracking module. 

 
 
 

 
Figure 7: Occlusion handling during point-and-go 
navigation. The system is capable of re-acquiring an 
initially selected goal despite multiple occlusions by 
moving objects and change in perspective. 

 
Passive Ranging 

Ranging presents a particular challenge for single-camera 
systems, which must infer distance to an object based on 
either known properties of the target or environment, or by 
analyzing an object’s change in appearance over time. The 
MULE-F point-and-go navigation module enables long-
distance driving and autonomous stopping by estimating 
time-to-arrival as a function of the rate of change of the 
tracked object’s angular resolution. The approach is 
computationally efficient, and functions in the absence of 
odometry, as measurements are made entirely based on 
visual information. Figure 8 illustrates the geometry of the 
problem.  

 
Figure 8: Time-to-arrival geometry for a visually-
tracked object. Time to arrival tarr may be inferred 
directly given a minimum of two angular observations at 
different times t1 and t2.  
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Given subsequent angular measurements of a fixed-height 
(or width) object, the object’s range may be estimated as a 
function of time:  

 
𝑡𝑎𝑟𝑟 = 𝑑𝑡 tan (𝜃2)

tan(𝜃1)−tan (𝜃2)
       (1) 

 
Following (1), absolute metric distance may be calculated 

given reliable odometry or a constant velocity assumption.  
 
CONCLUSIONS 

 
We present a lightweight, single-camera system capable of 

providing semi-autonomous behaviors including leader-
following, gesture recognition, convoying, and point-and-go 
navigation. While sensors such as LIDAR and GPS provide 
valuable data for obstacle avoidance and navigation, the use 
of these technologies is restricted to certain types of 
platforms, and is not appropriate for all applications. In this 
work, we establish that useful semi-autonomous behaviors 
may be achieved using only a single camera and lightweight 
computer, enabling deployment on a wide variety of 
platforms at minimal cost. We anticipate that continued 
development in this area will enable the deployment of 
squad-level robotic teammates capable of acting as semi-
autonomous mules, relays, scouts, and perimeter security. 
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